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A lumped mass model is proposed to study the parametric instability of a cantilever
shaft}disk system subjected to axial and follower loads, respectively. In the present study,
a set of linearized sti!ness in#uence coe$cients of a longitudinally loaded cantilever shaft is
derived. The mathematical model also takes into account the e!ect of shear deformation.
Because linearized sti!ness in#uence coe$cients are used, the governing di!erential
equations of the system become a set of coupled Mathieu}Hill equations. By the use of
Bolotin's method, the equation of boundary frequencies can be obtained and is used to
determine the boundaries between stable and unstable regions. As compared to the unstable
regions obtained from "nite element method, the present results show not only good
agreement with them, but also much easier to construct the unstable regions. From the result
of numerical simulations, several destabilizing factors of the rotational cantilever shaft}disk
system are found.

( 2000 Academic Press
1. INTRODUCTION

Parametric vibration refers to oscillatory motion that occurs in a structure or a mechanical
system as a result of time-dependent variation of parameters such as inertia, damping, or
sti!ness. Although parametric vibration is regarded to be of secondary interest, it can have
catastrophic e!ects on mechanical systems near critical regions of parametric instability.
According to the sources of the time-dependent variation, parametric instabilities of interest
in the "eld of rotating machinery can be broadly categorized as follows:

1. Parametric instability due to unsymmetrical disk, shaft, and/or bearing characteristics
[1].

2. Parametric instability due to external pulsating torque [2].
3. Parametric instability due to external pulsating longitudinal loading [3, 4].

The "rst two categories had been thoroughly investigated during the past 50 years. Only
a few investigations, however, have been devoted to the third category. Shaft}disk systems
(rotors) subjected to longitudinal forces (includes axial and follower types) due to a pressure
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di!erence across the rotor disks can be found in many rotating machines. For these reasons,
the present paper will focus on the parametric instability of rotating shaft}disk systems due
to pulsating longitudinal loadings.

The literature on the parametric instability behavior of non-rotating structural members
or machine components is voluminous [5}9], but only a small amount of work relates to
rotor systems. Sinha [3] used Galerkin's method to derive the equations for determining the
stability conditions of a uniform viscoelastic shaft}disk system subjected to a pulsating axial
load. In his work, the Dirac's impulse function and the idea of equivalence are introduced to
consider the disks mounted on the shaft at di!erent locations. Chen and Ku [4] used the
"nite element method to investigate the dynamic stability of a cantilever shaft}disk system
subjected to time-varying axial periodic forces.

Several well-established prediction methods are available for linear analyses of rotor
systems and can be divided into three major classes according to the modelling procedure.
The "rst is the discretization method, such as the transfer matrix method [10, 11] and the
"nite element method [12, 13]. The second is the analytical method in which a rotor system
is treated as a continuous system whose motions are described by partial di!erential
equations [14}17]. The third is the approximate method using lumped mass model that
neglects the mass distribution of the shaft [18}20]. With the recent development of
computer hardware and software, the discretization method has become a popular method
for analysis of transverse vibrations of rotor systems. Analytical methods often yields highly
accurate and essential information on the behavior of rotor systems. However, they are
often di$cult to implement and closed-form solutions are not generally possible. When the
mass of the shaft is small compared to that of the disks and the higher-frequency modes
are less important, lumped mass models are generally suitable for the analysis of such
shaft}disk systems.

In the past, investigators generally used lumped mass models to study the dynamic
behaviour of rotor systems. They usually use Euler}Bernoulli beam theory that neglects the
e!ect of shear deformation. Furthermore, to authors' knowledge, the incorporation of the
longitudinal force e!ect in lumped mass models has not been published. The "rst objective
of this paper is to derive the exact sti!ness in#uence coe$cients of the cantilever shafts
subjected to longitudinal forces. In order to obtain a more accurate description of the
dynamic behavior of shaft}disk systems, the present shaft mathematical model also takes
into account the e!ect of shear deformation. Because the exact sti!ness in#uence coe$cients
of the shafts are highly transcendental and di$cult to interpret, each sti!ness in#uence
coe$cient is expanded in a Taylor's series about the longitudinal force. The sti!ness
in#uence coe$cients are then approximately expressed as linear functions of the
longitudinal load. The resulting lumped mass model is very suitable to deal with the
problems of parametric instability caused by periodic longitudinal loads. In this paper,
a lumped mass model with approximate sti!ness in#uence coe$cients is employed to derive
the governing equations of the cantilever shaft}disk systems subjected to periodic
longitudinal forces. The boundaries between the regions of stability and instability are
constructed by applying Bolotin's method under the condition of a constant rotational
speed. The e!ects of shear deformation, gyroscopic moment, and static longitudinal loading
on the regions of parametric instability are studied.

2. MATHEMATICAL FORMULATION

A uniform circular cantilever shaft of length ¸, with a circular disk attached at the free
end, subjected to a periodic longitudinal force p(t), and rotating at a constant speed X is



Figure 1. A cantilever shaft}disk system subjected to a longitudinal loading and its co-ordinate system.
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illustrated in Figure 1. A set of inertia reference frame o-xyz, with origin o at the left end of
the shaft, is adopted. The following assumptions of the present rotor system are made.

1. The mass of the shaft is neglected compared with that of the disk.
2. The axial motion of the shaft is small and can be reasonably neglected.
3. The attached disk is rigid with mass M

D
, and diameteral and polar moments of inertia

I
D
, I

P
, respectively.

4. The #exibility of the bearing is neglected compared with that of the shaft.

2.1. EQUATIONS OF MOTION

The displacement and orientation of the disk are described by the translations < and
= in the y- and z- directions and small rotations B and C about y- and z-axis. Using
a Newtonian approach, the following governing equations of the rotating cantilever
shaft}disk system can be obtained [19]:
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where k
ij
, i, j"1, 2, are sti!ness in#uence coe$cients of the cantilever shaft subjected to

a longitudinal force, and can be determined using mechanics of solids. The detailed
procedure is shown in Appendix A.

Introducing the complex notations

;"<#j=, W"C!jB. (5, 6)

Equations (1)} (4) can be conveniently expressed as
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2.2. APPROXIMATE EXPRESSIONS FOR STIFFNESS INFLUENCE COEFFICIENTS

Although the exact sti!ness in#uence coe$cients had been derived in Appendix A, they
are highly transcendential and di$cult to interpret. A simpli"ed approximate expression for
each k

ij
can be obtained by expanding it in a Taylor's series about p"0, i.e.

k
ij
+ka

ij
#pkb

ij
, (9)

where only "rst order terms in p have been retained and
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. (10, 11)

The parameter p is taken as positive if the longitudinal load is compressive and as negative if
it is tensile.

The factors of ka
ij

and kb
ij

for the cantilever shaft subjected to axial and follower forces are
listed, respectively, in Appendix B.

2.3. BOUNDARY FREQUENCY EQUATIONS

By using the linear approximated sti!ness in#uence coe$cients, the governing di!erential
equations of a rotational cantilever shaft}disk system subjected to a time-dependent
longitudinal load p (t) can be written, in matrix form, as

MqK#Gq5 #[Ka#p(t)Kb]q"0, (12)

where
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For the case in which the shaft}disk system is subjected to a periodic longitudinal load of
the form

p (t)"p
0
#p

t
cos ht, (18)

where h is the longitudinal disturbance frequency. The static and time-dependent
components of the load an be expressed as a fraction of the fundamental static buckling
load p

cr
of the non-rotating shaft as

p (t)"a
s
p
cr
#b

d
p
cr

cos ht, (19)

where a
s
, and b

d
are referred to as the static and dynamic load factor, respectively.
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By substitution of equation (19) into equation (12), the governing equations of the system
become

MqK#Gq5 #(Ka#a
s
p
cr
Kb#b

d
p
cr

cos htKb)q"0. (20)

Equation (20) represents a system of second order di!erential equations with periodic
coe$cients of the Mathieu}Hill type. Application of the theory of linear equations with
periodic coe$cients, the boundaries between stable and unstable regions can be constructed
by periodic solutions of period ¹ and 2¹ [5], where ¹"2n/h. In parametric instability
problems, the usual interest is to determine the boundaries of the principal instability region
in the frequency domain, in which the solutions correspond to the period of 2¹. As a "rst
approximation and focusing only on the case of simple parametric resonance type, the
periodic solutions with period 2¹ can be sought in the form

q"a sin (ht/2)#b cos (ht/2). (21)

By substituting equation (21) into equation (20) and equating the coe$cients of the
sin (ht/2) and cos (ht/2) terms, a set of linear homogeneous algebraic equations in terms of
a and b is obtained as
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The condition for the set of linear homogeneous equations, equations (22) and (23), to
have non-trivial solutions is
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Equation (24) is referred to as the equation of boundary frequencies and can be used to
construct the principal regions of parametric instability. It is worth noting that equation
(24) can be further reduced to a quartic equation, therefore the boundaries of unstable
regions can be quickly obtained and a lot of computer time is saved.

3. NUMERICAL RESULTS AND DISCUSSION

3.1. ACCURACY OF APPROXIMATE STIFFNESS INFLUENCE COEFFICIENTS

To evaluate the accuracy of the present approximate sti!ness in#uence coe$cients, it is
convenient to introduce the following non-dimensional parameters:
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Figure 2. Comparisons of the exact and approximate values of sti!ness in#uence coe$cients of a cantilever shaft
under axial loading. (a) kN

11
; (b) kN

12
and kN

21
; and (c) kN

22
. (* exact; - ) - ) - linear).
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Two non-dimensional parameters of the shaft employed here are r"0.08, and E/iG"3.0.
The comparisons of the exact and approximate sti!ness in#uence coe$cients for
the cantilever shafts subjected to an axial loading and a follower loading are
given, respectively, in Figures 2 and 3. The magnitude of the non-dimensional longitudinal
load in Figures 2 and 3 is considered to be within the interval (!pN

cr
, #pN

cr
), where pN

cr
is the non-dimensional critical load of the corresponding system (pN

cr
"2.3558 for the case of

cantilever shaft subjected to an axial loading, and pN
cr
"12.3019 for the case of canti-

lever shaft subjected to a follower loading). As can be seen from Figures 2 and 3, the
present approximate values of kN

ij
except for kN

21
and kN

22
in Figure 3 are very close

to their exact values over a considerable range of the longitudinal load. Fortunately,
only the element kN

11
is the dominant parameter in the present study, so the error

induced by the discrepancies between approximate and exact values of kN
21

and kN
22

is
limited.



Figure 3. Comparisons of the exact and approximate sti!ness in#uence coe$cients of a cantilever shaft under
follower loading. (a) kN

11
; (b) kN

12
; (c) kN

21
; and (d) kN

22
. (* exact; - ) - ) - linear).
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3.2. INSTABILITY REGIONS

To evaluate the accuracy of the present lumped mass model, the basic parameters of the
system, as listed in Table 1, are the same as used by Chen and Ku [4]. The regions of
parametric instability obtained, respectively, by the present lumped mass model and "nite
element method with the static load factor a

s
"0.5 are shown and compared in Figure 4, in

which the unstable regions are shaded in these and the following diagrams. It is observed
that the agreement of the principal ("rst) unstable regions obtained by the present lumped
mass model with those by the "nite element method [4] is good. Because the inertia of the
shaft is neglected in the present model, the unstable regions, as compared with the results of
reference [4], are slightly shifted right in parallel to the dynamic load factor axis.
Admittedly, a less-good agreement in the second unstable regions is detected. This is
because that the mass ratio of disk to shaft is only 1.16. For neglecting 46% mass of the
system, however, the boundary frequencies of the second unstable regions obtained by the
present model are only 15% higher than that by the "nite element method. If the mass ratio
of disk to shaft exceeds 3.0, a satisfactory accuracy of the present model can be expected. In
addition, the matrix dimension accessed in the "nite element method for an accepted



TABLE 1

Con,guration data and material properties of the cantilever shaft}disk system used in
reference [4]

¸"50.0 cm (length of the shaft) /"2.0 cm (diameter of the shaft)
E"207.0 GPa (Young's modulus of
the shaft)

G"79.6 GPa (shear modulus of the shaft)

o"7680.0 kg/m3 (density of the shaft) i"0.89 (shear coe$cient of the shaft)
M

D
"1.401 kg (mass of the disk) I

D
"0.0136 kg-m2 (diameter mass moment of

inertia of the disk)
I
P
"0.0272 kg-m2 (polar mass moment of

inertia of the disk)
u

n
"159.805 rad/s (natural frequency of the

non-rotating shaft}disk system)
p
cr
"16.0 kN (static buckling load of the shaft)

Figure 4. Comparison of the unstable regions obtained by two di!erent models with the static load factor
a
s
"0)5. (a) X"0 and (b) X"1000 r.p.m. (*, present; - - -, "nite element model).
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accuracy needs 80]80 after the governing equation of the system is written in the "rst order
state vector form. However, the boundaries of the unstable regions are obtained just by
solving a quartic equation in the present model, therefore a lot of computer time can be
saved.

To simplify subsequent discussion, the following non-dimensional inertial quantities of
the disk, rotational speed and whirl speed are introduced.
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Figure 5. E!ect of shear deformation on the unstable regions of the cantilever shaft}disk system subjected to the
axial-type loading with a

s
"0)5, (a) XM "0; (b) XM "1; (c) XM "2. (*, Timoshenko beam theory; - - -, Euler}Bernoulli

beam theory).
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where o is the density of the shaft. For typical numerical simulations of the system, the basic
non-dimensional data r"0.08, E/iG"3.0, MM

D
"5.0, IM

D
"0.8, and IM

P
"1.6 are used.

The e!ect of shear deformation (i.e., the di!erence between Euler}Bernoulli beam theory
and Timoshenko beam theory) on the unstable regions of a cantilever shaft}disk subjected
to an axial-type loading with three di!erent rotational speeds is shown in Figure 5, where u

n
is the fundamental natural frequency of the non-rotating cantilever shaft}disk system
obtained by Timoshenko beam theory. Figure 5 shows that the unstable regions obtained
by Euler}Bernoulli beam theory are shifted away from the dynamic load factor axis as
compared to that by Timoshenko beam theory. Therefore, neglecting shear deformation in
the analysis of the parametric instability is not on the side of safety. In other words, shear
deformation has a destabilizing e!ect on the parametric instability of the present system.
Another observation from Figure 5 shows that as the rotational speed increases, the
boundaries of the unstable regions are shifted outwardly, and the widths of these unstable



Figure 6. E!ect of the static load factor a
s
on the unstable regions of the cantilever shaft}disk system subjected

to the axial-type loading. (a) XM "0; (b) XM "1; (c) XM "2. (*, a
s
"0)0; - - -, a

s
"0)2; - ) - ) -, a

s
"0)5).
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regions are drastically increased; therefore, the system becomes more prone instability.
Since the gyroscopic moment is proportional to the rotational speed, it leads to
a conclusion that the gyroscopic moment has a destabilizing e!ect on the parametric
instability problem. The numerical results also show that the left unstable boundary is
constructed by the backward precessional mode, whereas the right unstable boundary is
constructed by the forward precessional mode.

The e!ect of the static load factor a
s

on the unstable regions for di!erent rotational
speeds is studied next. The results are shown in Figure 6 for the axial-type loading and in
Figure 7 for the follower-type loading. Here the static load factor a

s
is taken as 0, 0.2 and 0.5,

respectively. It is seen from Figure 6 that if a higher value of a
s
is applied, the unstable

regions are shifted left closer to the dynamic load axis; thus the system is more unstable
because the system will have parametric resonance occurring at the lower axial disturbance
frequencies. In contrast to the case of periodic axial loading, as a

s
increased, the "rst



Figure 7. E!ect of the static load factor a
s
on the unstable regions of the cantilever shaft}disk system subjected

to the follower-type loading. (a) XM "0; (b) XM "1; (c) XM "2. (*, a
s
"0)0; - - -, a

s
"0)2; - ) - ) -, a

s
"0)5).
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unstable region caused by the periodic follower loading is shifted right away from the
dynamic load axis for XM "0, but shifted inwardly, and the width of the "rst unstable region
is slightly decreased for XM "1 and 2. The di!erent e!ects of the periodic axial loading and
the periodic follower loading can be realized by the load}frequency curves as shown in
Figure 8. The rotational speeds XM of the system considered here are, respectively, 0 for
Figure 8(a) and 2 for Figure 8(b). In Figure 8, the positive whirl speed indicates the forward
precession, while the negative whirl speed denotes the backward precession. For the case of
XM "0, of course, there is no distinction between forward and backward precessions. The
magnitudes of the positive natural frequencies should be equal to those of the
corresponding negative natural frequencies. In Figure 8(a), the system is reduced to
a non-rotating structure problem and all curves are symmetric about the horizontal line of
uN "0. As observed in Figure 8(a), both the "rst and second natural frequencies decrease
with the increasing of axial loading, while the "rst natural frequency increases as the
follower loading increased. Although the behavior of the boundary frequencies of the



Figure 8. The load}frequency curves of the cantilever shaft}disk system (MM
D
"5)0, IM

D
"0)8, IM

P
"1)6). (a) XM "0;

(b) XM "2. (*, axial force; - - -, follower force).
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unstable regions is not identical to that of natural frequencies, their characteristics are
essentially similar. According to these load}frequency curves, the di!erence between
Figures 6(a) and 7(a) an be clearly realized. In Figure 8(b), the curves are not symmetric due
to the presence of the gyroscopic moment. Both the "rst forward whirl speed (1F) and
the "rst backward whirl speed (1B) decrease with the increasing axial loading before the
non-dimensional axial loading exceeds the static buckling load, pN

cr
("2.3558), of

the corresponding non-rotating cantilever beam. This is the reason why the "rst unstable
regions in Figures 6(b) and 6(c) are shifted left to the dynamic load factor axis when the
larger static load factor a

s
is applied. On the other hand, the whirl speed of the "rst forward

mode (1F) increases and that of the "rst backward mode (1B) decreases with the increasing
follower force. Consequently, the characteristics of the "rst unstable regions in Figure 7(b)
and 7(c) can be expected.



Figure 9. E!ect of the loading type on the unstable regions of the cantilever shaft}disk system with a
s
"0)5. (a)

XM "0; (b) XM "1; (c) XM "2. (*, axial force; - - -, follower force).
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Finally, the e!ect of the loading type on the unstable regions of the cantilever shaft}disk
system is compared in a clearer manner and the result are shown in Figure 9. From the
properties of the load}frequency curves, as indicated in Figure 8, the "rst unstable region
caused by the periodic follower force is in the right side to that by the periodic axial force.
Therefore, under the same static load factor, a periodic axial loading makes the system more
unstable than a periodic follower force does.

4. CONCLUSIONS

A lumped mass model is proposed to determine the regions of parametric instability
of a cantilever shaft}disk system subjected to periodic longitudinal forces. By the use of
Bolotin's method, the equation of boundary frequencies can be obtained and is used to
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determine the boundaries between stable and unstable regions. As compared to the unstable
regions obtained from the "nite element method, the present results show not only good
agreement with them but also much easier to construct the unstable regions. From the
results of numerical simulations, the following conclusions can be drawn.

(a) For each unstable region, the left-side boundary is constructed by the backward
precessional mode, whereas the right-side boundary is constructed by the forward
precessional mode.

(b) Both shear deformation and gyroscopic moment have a destabilizing e!ect on the
parametric instability of the present cantilever shaft}disk system.

(c) The system will have parametric resonance occurring at lower axial disturbance
frequency if a higher value of static load factor is applied.

(d) If a higher value of static load factor is applied, the "rst unstable region caused by
periodic follower force is shifted inwardly, and the width is slightly decreased.

(e) The periodic axial loading makes the rotor system more unstable than the periodic
follower force does under the same static load factor.
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APPENDIX A. STIFFNESS INFLUENCE COEFFICIENTS OF CANTILEVER SHAFTS
SUBJECTED TO LONGITUDINAL FORCES

Figure A1 shows a cantilever shaft subjected to a longitudinal load at free end. In order to
obtain the sti!ness in#uence coe$cients of the cantilever shaft, it is convenient to start with
the #exibility in#uence coe$cients rather than sti!ness in#uence coe$cients at this stage.
To this end, a transverse loading F

y
and a moment M

z
are applied at the free end of the

shaft. The governing di!erential equations and corresponding boundary conditions for
such an elastic system can be easily achieved by use of the principle of virtual work

dP!d=
NC

"0, (A1)

where P is the potential energy of the system, and d=
NC

is the vitual work done by
non-conservative external load.

Taking into account the shear deformation, the potential energy P for a cantilever shaft
of cross-sectional area A and moment of inertia of the shaft cross-section I is given by

P"P
L

0
C
EI

2 A
dc
dxB

2
#

iGA

2 A
dl
dx

!cB
2
!

1

2
p A

dl
dxB

2

D dx!F
y
l(¸)#M

z
c(¸), (A2)

where E, G and i are the Young's modulus, shear modulus and shear coe$cient of the shaft,
respectively, l and w are the translations in the y- and z-directions, and b and c are the small
rotations about y- and z-axis.

The only virtual work included in this study is due to the longitudinal load p and can be
expressed as

d=
NC

"!kpc(¸ )dl(¸), (A3)

where k"0 implies that the load is a conservative force acting in the axial direction of the
undeformed shaft and then d=

NC
"0, and k"1 implies that the load is a fully tangential

follower force.
Upon substituting equations (A2) and (A3) into the principle of virtual work, equation

(A1), the governing di!erential equations for the shaft are obtained and shown in the
following way:

EI
d2c
dx2

#iGA A
dl
dx

!cB"0, (A4)

(iGA!p)
d2l
dx2

!iGA
dc
dx

"0. (A5)



Figure A1. A longitudinally loaded cantilever shaft with transverse loading and moment applied at its free end.
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The necessary and su$cient boundary conditions are:
(a) Clamped end (at x"0):

l"0, c"0. (A6, A7)

(b) Free end (at x"¸):

EI
dc
dx

"M
z
, (iGA!p)

dl
dx

!(iGA!kp)c!F
y
"0. (A8, A9)

By applying the Laplace transformation with respect to x, the de#ection and rotation at
"¸ can be obtained and expressed, in matrix form, as

G
l(¸)

c(¸)H"C
c
11

c
21

c
12

c
22
D G

F
y

M
z
H , (A10)

here c
ij
, i, j"1, 2, are #exibility in#uence coe$cients of the cantilever shaft, and can be

xpressed as follows:
(a) The cantilever shaft subjected to an axial load

c
11
"G

!

¸

p
#

kEI sin(k¸)

p2 cos(k¸)
, when p'0 (compression),

!

¸

p
!

kEI sinh(k¸)

p2 cosh(k¸)
, when p(0 (tension),

(A11)

c
12
"G

1!cos(k¸)

p cos(k¸)
, when p'0 (compression),

1!cosh(k¸)

p cosh(k¸)
, when p(0 (tension),

(A12)

c
21
"c

12
, (A13)

c
22
"G

sin(k¸)

KEI cos(k¸)
, when p'0 (compression),

sinh(k¸)

KEI cosh(k¸)
, when p(0 (tension),

(A14)
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where

k"C
iGA Dp D

EI(iGA!p)D
1@2

. (A15)

(b) The cantilever shaft subjected to a follower load;

c
11
"G

KEI sin(k¸)

p2
!

¸ cos(k¸)

p
, when p'0 (compression),

!

KEI sinh(k¸)

p2
!

¸ cosh(k¸)

p
, when p(0 (tension),

(A16)

c
12
"G

!

1

p
#

cos(k¸)

p
#

k¸(iGA!p) sin(k¸)

piGA
, when p'0 (compression),

!

1

p
#

cosh(k¸)

p
!

k¸(iGA!p) sinh(k¸)

piGA
, when p(0 (tension),

(A17)

c
21
"G

1!cos(k¸)

p
when p'0 (compression),

1!cosh(k¸)

p
when p(0 (tension),

(A18)

c
22
"G

k (iGA!p) sin (k¸)

piGA
, when p'0 (compression),

!

k (iGA!p) sinh(k¸)

piGA
when p(0 (tension),

(A19)

From the relation between sti!ness and #exibility in#uence coe$cients, equation (A10)
can be rewritten as

G
F
y

M
z
H"C

k
11

k
21

k
12

k
22
D G

l(¸ )

c(¸ )H , (A20)

where

k
11
"

c
22
D

, k
12
"

c
12
D

, k
21
"

c
21
D

, k
22
"

c
11
D

, D"c
11

c
22
!c

12
c
21

. (A21}A25)

By using the co-ordinate transformation or the same procedure as above, the relation
between displacement vector and force vector in xz plane can be easily obtained as

G
F
z

M
y
H"C

k
11

!k
21

!k
12

k
22
D G

w(¸ )

b (¸) H . (A26)
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APPENDIX B. ka
ij

AND kb
ij

COEFFICIENTS FOR CANTILEVER SHAFTS

(a) The cantilever shaft subjected to an axial load:

ka
11
"12EI/x̧3 (1#12Uy , kb

11
"!6(1#20U#120U2) / x5¸(1#12U)2y , (B1, B2)

ka
12
"!6EI x̧2(1#12U )y , kb

12
"1/ x10¸(1#12U)2y , (B3, B4)

ka
21
"ka

12
, kb

21
"kb

12
, (B5, B6)

ka
22
"4EI(1#3U) /x̧ 2(1#12U)y , kb

22
"!2¸(1#15U#90U2) /x15(1#12U)2y ,

(B7, B8)

where U"EI/iGA¸2.

It is noteworthy that if the parameter U is omitted, then the above factors correspond to the
conventional Euler}Bernoulli beam model.
(b) The cantilever shaft subjected to a follower load: All factors are the same as the case (a)
except for

kb
12
"(11#240U#1440U2) / x10¸(1#12U2y. (B9)

The sti!ness matrix in this case is asymetric due to kb
12
Okb

21
. This result can be expected

because the follower force is a non-conservative load.
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